Chapter 2

The Chemistry of Life

Worksheet

Composition and Reactions of Matter

Background Information

The basic unit of matter is the **atom**. The atom is made up of even smaller particles. Three of these **subatomic particles** are the proton, the neutron, and the electron. Both the positively charged protons and the electrically neutral neutrons form the **nucleus** of the atom. The negatively charged electrons travel around the nucleus of the atom in a series of distinct **energy levels**.

The number of protons in the nucleus of an atom, or the **atomic number**, is used to identify the atom. The total number of protons and neutrons in the nucleus is called the **mass number**.

Substances that consist entirely of only one type of atom are called **elements**. Each element is represented by a chemical **symbol**. The number of protons in an atom of an element never changes. The number of neutrons, however, may vary from one atom of an element to the next. Atoms of the same element that have different numbers of neutrons are called **isotopes**. Certain kinds of isotopes are **radioactive**.

Substances that consist of more than one type of atom are called **chemical compounds**. Most of the materials in the living world are compounds.

Procedure

1.	Match the space pr			Write tl	he letter of the definition that corresponds with each term in the
		1.	mass number	a.	atoms of the same element with different numbers of neutrons
		2.	chemical symbol	b.	positively charged particle
		3.	isotopes	c.	subatomic particle located outside the nucleus of the atom
		4.	atomic number	d.	substance that contains two or more different kinds of atoms.
		5.	nucleus	e.	number of protons in an atom
		6.	neutron	f.	shorthand way of representing an element
		7.	element	g.	center of the atom
		8.	proton	h.	electrically neutral subatomic particle
		9.	chemical compound	i.	number of protons plus the number of neutrons in an atom
		10.	electron	j.	substance consisting of only one type of atom

Background Information

Atoms that have the same number of protons and electrons are electrically neutral. However, atoms may gain or lose electrons during chemical reactions. This creates an imbalance of negative and positive charges. Atoms may have a negative charge because they have gained extra electrons. Such atoms are called **negative ions**. Other atoms may have a positive charge because they have lost electrons. These atoms are called **positive ions**.

Procedure

2. The following table contains information about several atoms. Using what you have learned in the preceding paragraph, complete the table. Enough information has been provided for you to fill in all the blanks.

Element N and Sym		Atomic Number	Mass Number	Number of Protons	Number of Neutrons	Number of Electrons	Isotope, Ion, or Neutral Atom
Aluminum	(Al)	13	27			13	neutral atom
Bromine	(Br)			35	45	36	
Carbon	(C)	6			6	6	
Carbon	(C)	6	14			6	
Helium	(He)	2	4				neutral atom
Hydrogen	(H)	1		1	0		neutral atom
Hydrogen	(H)		1			0	
Lithium	(Li)	3	7			2	
Nitrogen	(N)		14				neutral atom
Oxygen	(O)		18	8		8	
Oxygen	(O)	8	16			10	
Potassium	(K)		39	19			neutral atom

3. Use the information from the attached Periodic Table to answer questions 1 through 3 and to fill in the table that follows. A small portion of a Periodic Table is shown below. A more current Periodic Table can be found at the end of this worksheet.

1 Hydrogen 1.0079							Helium 4.0026
3 Li Lithium 6.941	Be Beryllium 9.0122	5 B Boron 10.811	6 C Carbon 12.011	7 N Nitrogen 14.007	8 Oxygen 15.999	9 F Fluorine 18.998	10 Ne Neon 20.180
11 Na Sodium 22.990	12 Mg Magnesium 24.305	13 Al Aluminum 26.982	14 Si Silicon 28.086	15 P Phosphorus 30.974	16 S Sulfur 32.066	17 C I Chlorine 35.453	18 Ar Argon 39.948

Questions about the Periodic Table

1. V	What is	the be	oldfaced	letter	or	letters	in	the	center	of th	ie b	ox?
------	---------	--------	----------	--------	----	---------	----	-----	--------	-------	------	-----

2	What is the	number above a	boldfaced letter or	letters and what	does it stand for?

3. What is the number below the name of an element and what does it stand for?

Data Table (Use the Periodic Table to fill in the missing data)

Element	# of Protons	# of Neutrons	Total # of Electrons	# of Electrons in 1 st Energy Level	# of Electrons in 2 nd Energy Level	# of Electrons in 3 rd Energy Level	Stable or Unstable
Carbon							
Chlorine							
Helium							
Hydrogen							
Sulfur							
Magnesium							
Neon							
Nitrogen							
Oxygen							
Phosphorus							
Sodium							
Argon							

Background Information

Any process in which a chemical change occurs is known as a **chemical reaction**. A chemical reaction converts elements or compounds known as **reactants** into elements or compounds known as **products**. A **chemical equation** uses symbols and formulas to describe a chemical reaction.

Energy is the most important factor in determining whether a reaction will occur. A chemical reaction that releases energy may occur **spontaneously**. A chemical reaction that requires energy, however, will not flow without a source of energy.

Describing Chemical Reactions

	number of chemical reactions are described below. hen write an equation for each reaction.	In the spaces provided, identify the reactant(s) and the product(s).
a)	A sodium ion (Na ⁺) reacts with a chlorine ion (Cl ⁻) to form the compound sodium	Reactant(s):
	chloride (NaC1)	Product(s):
		Equation:
b)		Reactant(s):
	when a magnesium ion (Mg^{+2}) reacts with an oxygen ion (O^{-2})	Products(s):
		Equation:
Backgroui	nd Information	
next fe of ator	w problems are a bit more tricky because you will be a soft each element is the same on both sides of the a write a chemical equation with correct symbols a Count the number of atoms of each element on ear Balance atoms by using coefficients. Coefficient substance are involved in the reaction. Note: On symbols or formulas.	ach side of the arrow. ts are numbers that indicate how many atoms or molecules of each ally change coefficients when balancing an equation. Never change
•	Check your work by counting the atoms of each of	
c)	Nitrogen (N_2) and hydrogen (H_2) form ammonia (NH_3) .	Reactant(s):
		Product(s):
		Equation:
d)	2 - 3)	Reactant(s):
	form water (H_2O) and carbon dioxide (CO_2) .	Product(s):
		Equation:
e)	bines with oxygen gas (O ₂) to produce	Reactant(s):
	carbon dioxide (CO ₂) and water (H ₂ O).	Product(s):
		Equation:

the periodic table

		_			,						_			_									,
		20022	Ţ	francium 87	132.91	Cs	55	85.468	Rb	37	39.098	X	19	22.990	Na	11	6.941		ω	1.0079	I	hydrogen 1	_
**actinoids	*lanth:	220.U3	Ra	radium	137.33	Ba	56	87.62	Sr	38	40.078	Ca	20	24.305	Mg	magnesium 12	9.0122	Be	4	F20.00			א
oids	*lanthanoids		**	89-102		*	57-70										1						
AC [227.03]	57 138.91 actinium		ς	lawrencium 103	174.97	_	71	88.906	~	39	44.956	Sc	21	econdina m									ω
232.04 T	58 140.12 thorium	263.11	곴		+-			+-	Zr		1	=		titoniim			atomic w	(C)	<u>a</u>	Key:			4
731.04 231.04	59 140.91 protactinium 91	262.11	B	n dubnium 105	180.95	Ta	73	92.906	S	41	50.942	<	23	vanadium			atomic weight (mean relative mass)	symbol	atomic number				(J)
	144.24 1 uranium 92	1	Sg	seaborgium 106	183.84	\{	74	95.94	≥	42	51.996	ဂ္	24	choomium			lative mass)	<u>o</u>	lber .				თ
N	Pm [144.91] neptunium 93	4 h	Bh			Re	75	[97.907]	_C		+	3	_	manana									7
	71 40 4	1	Hs	hassium 108	190.23	Os	76	101.07	몬		✝			1									co
Am	63 151.96 americium 95	268.14	₹	meitnerium 109	192.22	=	77	102.91	ァ -	45	58.933	င္ပ	27	200									9
Cm	980 gadoinum 64 157.25 curium 96	12/2.15	Uun	ununnilium 110	195.08	卫		+	Pd		T	Z		2222									6
	65 65 158.93 berkelium 97	2/2.16	Uuu		196.97	P		T	Ąg		63.546	ဥ	29										1
[261.08]	162.50 californium						80	112.41	င္သ	48	65.39	Zn	30										12
[252.08]	HO 164.93 einsteinium				204.38	ᅼ	81	114.82	3	49	69.723	Ga	gaillum 31	26.982	≥	aluminium 13	10.811	W	5 DORON				13
73	167.26 fermium	[289]	Duq	ununquadium 114	207.2	Pb	82 2	118.71	Sn	50	72.61	Ge	germanium 32	28.086	S	silicon 14	12.011	റ	carbon G				14
Md	168.93	-						T			Т			Τ	ס	70	Г			1			5
	70 70 173,04 102	1 -	Uuh		_			+			+			+			 			1			16
	1	. L									Т			Т	Ω					1			17
		[293]	Uuc	ununoctiu 118	[222.02]	ァ	86	131.29	×e	54	83.80	즛	36	39.948	P	argon	20.180	Z	10 neon	4.0026	I,	helium	18